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Introduction

On a smooth Riemannian manifold Mn the Laplacian on k-forms is given by

∆ = d δ + δd = ∇∗∇+Wk

Wk is the curvature (Weitzenböck) tensor on k-forms. It coincides with Ric when
k = 1 and is bounded below when the curvature tensor is bounded below.

∆ is a self-adjoint, nonnegative definite operator on L2(Λk).
It can also be extended to a closed operator on Lp(Λk).

The spectrum of ∆ consists of all points λ ∈ C for which

∆− λI

fails to be invertible on its domain.

The definition for the spectrum is the same for any self-adjoint operator H on a
Hilbert space H, and also for a closed operator on a Banach space.
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The Lp spectrum

• The semigroup operator associated to the Laplacian e−t∆ can be extended to a
bounded operator on the Banach space Lp(Λk) for 1 ≤ p ≤ ∞ whenever Wk is
bounded below (L∞ = (L1)∗).

• The Laplacian on Lp(Λk) is defined as the generator of this semigroup.

• Its spectrum on Lp(Λk) is defined as above. We denote it by σ(p, k), and note
that it can depend on both p and k . By duality, we have

σ(p, k) = σ(p∗, k) whenever
1
p
+

1
p∗

= 1.

Poincaré duality gives: σ(p, k) = σ(p, n − k).

• The complement of the spectrum is known as the resolvent set ρ(p, k).
It is the set of points µ ∈ C where (∆− µ)−1 is bounded.

• For p ̸= 2, since the operator need no longer be self-adjoint, its spectrum can
contain nonreal eigenvalues.
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The Lp spectrum

• The spectrum of geometric operators like the Laplacian reflects the geometric
structure and analytic properties of the space and the bundle.

• When the manifold is compact, the Lp spectrum is always a discrete set and is
the same for all p. Therefore, studying the Lp spectrum for p ̸= 2 is only
interesting in the noncompact case.

• It is possible to prove the Lp independence of the spectrum for the Laplacian
(and Schrödinger operators) under certain conditions on the curvature and
geometry of the manifold.
- Hempel and Voigt 1986-87: Schrödinger operators over Rn depending on the
growth of the negative part of the potential.
- Sturm 1992: Uniformly elliptic operators in divergence form (including the
Laplacian on functions) over manifolds with Ricci curvature bounded below and
uniformly subexponential volume growth.
- C -N. Grosse 2023: Dirac operators over Clifford bundles if, in addition to
Sturm’s geometric conditions, the Clifford contraction (Weitzenböck tensor for
k-forms) is bounded below.
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The Lp spectrum

• On the other hand, σ(p, k) may contain a region in the complex plane when the
curvature is negative at an end of the manifold.

• It was proved by Davies, Simon and Taylor 1988 that over the hyperbolic space
Hn, the spectrum of the Laplacian on functions depends on p. σ(p, 0) is the
parabolic region in the complex plane

Qp,0 =
{

(n−1)2

4 + z2
∣∣∣ z ∈ C with |Im z | ≤ (n − 1)

∣∣∣ 1
p − 1

2

∣∣∣} .

The parabolic region reduces to the interval [(n − 1)2/4,∞) ⊂ R when p = 2,
and to the region {z | Re z ≥ (Im z/(n − 1))2 } when p = 1.

• They showed that for Kleinian Groups, M = Hn/Γ, with Γ a geometrically finite
group of isometries of Hn such that M is either cusp-free or of finite volume, the
Lp spectrum is the same parabolic region together with a finite number of isolated
eigenvalues on the real line, which are L2 eigenvalues.

• Ji-Weber 2010-2015, studied locally symmetric spaces of rank 1 and higher
rank, proving that the Lp spectrum for the Laplacian on functions contains a
parabolic region.
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The Lp spectrum

Theorem 1 (C.-Lu)
Over the Hyperbolic space Hn, for 0 ≤ k ≤ (n − 1)/2 and 1 ≤ p ≤ ∞

σ(p, k) = Qp,k =
{

(n−1−2k)2

4 + z2
∣∣∣ z ∈ C with |Im z | ≤ (n − 1)

∣∣∣ 1
p − 1

2

∣∣∣}
In the case when n is even and k = n/2, σ(p, n/2) is the parabolic region Qp,n/2
together with the point {0}.
The remaining cases are given by duality as σ(p, k) = σ(p, n− k) for n/2 ≤ k ≤ n.

Note that Qp,k = Qp∗,k whenever 1/p + 1/p∗ = 1.
For a fixed p the region increases in k for 1 ≤ k ≤ n/2.
The parabolic region reduces to [(n− 1− 2k)2/4,∞) ⊂ R when p = 2, recovering
the L2 spectrum for k-forms computed by Donnelly.
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The Lp spectrum - Some remarks

• There are always two steps to such proofs, for Hn but also in the general case.

• First show that a region is in the spectrum by finding approximate eigenforms.
Requires a more rigid structure at infinity so that we can write the Laplacian in
some nice coordinates, and obtain a large class of approximate eigenforms.
Examples are difficult to obtain.

• For the other containment, an analytical argument is required:
Find sufficient conditions on the manifold so that the resolvent operator
(∆− ξ)−1 is bounded for ξ in the complement of the target spectrum.
Usually, one uses resolvent estimates to show that (∆− ξ)−1 is bounded on L1 for
a region in the L1 resolvent, and then interpolates between the operators on L1

and L2 to get the resolvent set for any p.

• For for Hn the half dimension, k = n/2, is treated separately.
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The Lp spectrum - Some remarks

• From analytical results, the resolvent operator for the Laplacian on Lp-functions
is bounded for all ξ in the left-half plane without any assumptions on curvature.

• Davies-Simon-Taylor and later Taylor show that the Lp resolvent is bounded in
the complement of a parabola over certain manifolds with bounded curvature.
They use the wave kernel method to obtain estimates for the resolvent. This
requires controlling its parametrix in a uniform way. As a result, they need to
assume that the manifold has bounded geometry, and in particular injectivity
radius uniformly bounded below.

• By combining the wave kernel and heat kernel method we obtain estimates for
the resolvent that only assume Ricci curvature bounded below (and Weitzenböck
tensor bounded below for the case of forms), allowing us to remove the
assumption of bounded geometry.
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Heat kernel estimates

From now on, M is a complete noncompact manifold of dimension n.

Lemma 2

Suppose that the Ricci curvature and Weitzenböck tensor on k-forms are bounded
below. Then the heat kernel on k-forms satisfies

|h⃗t(x , y)| ≤ C1 vol(By (
√
t))−1eC3 t e−

d2(x,y)
C2t ,

If in addition the Weitzenböck tensor on (k + 1)-forms (resp. on (k − 1)-forms) is
bounded below, then

|dh⃗t(x , y)| ≤ C1 t
−1/2 vol(By (

√
t))−1eC3t e−

d2(x,y)
C2t

|δh⃗t(x , y)| ≤ C1 t
−1/2 vol(By (

√
t))−1eC3t e−

d2(x,y)
C2t

(resp.) where the Ci only depend on n and the curvature bounds.
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Heat kernel estimates

The heat kernel estimate follows from the domination property

|h⃗t(x , y)| ≤ eK1th(t, x , y)

whenever Wk ≥ −K1, and where h is the heat kernel on functions. It is a
consequence of Kato’s inequality, which allows us to compare pointwise the inner
product for the Laplacian on forms, to that for functions (Hess, Schrader,
Uhlenbrock).

For the derivatives of the kernel, the Bochner formula for forms gives

∆|dh⃗t(x , y)|+ ∂/∂t|dh⃗t(x , y)| ≤ K2|dh⃗t(x , y)|,

whenever Wk+1 ≥ −K2 (resp. for δh⃗t), and then we can apply the parabolic
version of the Moser inequality (Cheng-Li-Yau).
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Resolvent estimates

Theorem 3 (C.-Lu)

Suppose that M has Ricci curvature and Weitzenböck tensor on k-forms bounded
below. Then for any m > 0 and ξ ∈ R large enough

(∆ + ξ2)−m

is bounded on Lp(Λk) for any 1 ≤ p ≤ ∞.
If in addition the Weitzenböck tensor tensor on (k + 1)-forms (resp.
(k − 1)-forms) is bounded below, then for any m > 1/2
d(∆ + ξ2)−m, resp. δ(∆ + ξ2)−m, are bounded on Lp(Λk).

Proof: The resolvent kernel is given by g⃗m,ξ(x , y) = cn

∫ ∞

0
tm−1e−ξ2t h⃗t(x , y) dt

Using our heat kernel bounds we get (after some careful estimates):

sup
x

∫
M

|g⃗m,ξ(x , y)|dy + sup
y

∫
M

|g⃗m,ξ(x , y)|dx ≤ C .

Schur’s test now gives that the resolvent is bounded on Lp.
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Resolvent estimates

In fact, using a generalized Schur’s test, we can prove the following:
Let

φ(x) = (vol(Bx(1)))−1/2.

Then for any 1 ≤ p, q, r∗ ≤ ∞ such that 1 + 1
q = 1

p + 1
r∗ , the operator

φ1/r∗−1(∆ + ξ2)−mφ1/r∗−1

is bounded from Lp to Lq whenever m > n
2 (1 − 1

r∗ ).

The previous theorem corresponded to r∗ = 1. In general, q ≥ p.
The volume weight was ‘necessary’ in order to be able to prove the integrability of
the kernels using volume comparison.

In particular, our estimates imply that certain weighted integrals of the resolvent
kernel decay exponentially in d(x , y).
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The Lp spectrum

The exponential rate of volume growth of M, denoted by γ, is the infimum of all
real numbers satisfying the property: for any ε > 0, there is a constant C (ε),
depending only on ε and the dimension of the manifold, such that for any x ∈ M
and any R ≥ 1, we have

vol(Bx(R)) ≤ C (ε)vol(Bx(1))e(γ+ε)R .

Theorem 4 (C. - Lu)

Suppose that M has Ricci curvature and Weitzenböck tensor on k-forms bounded
below. Denote by γ the exponential rate of volume growth of M and λ1 the
infimum of σ(2, k). Let z be a complex number such that |Im(z)| > γ

∣∣∣ 1
p − 1

2

∣∣∣.
Then

(∆− λ1 − z2)−1

is a bounded operator on Lp(Λk(M)).
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The Lp spectrum: Proof of Theorem 4

• Our proof is a modification of the wave kernel technique of Taylor. Instead of
using the parametrix for the wave kernel we use a power of the resolvent.

• Let H = ∆− λ1, which is nonnegative on L2.
Let ξ > 0 a large enough real number. For any integer m ≥ 1, we have the
resolvent identity

(H − z2)−1 = K + (ξ2 + z2)−m(H − z2)−1(H + ξ2)−m,

where
K = (H + ξ2)−1 + · · ·+ (ξ2 + z2)m−1(H + ξ2)−m.

Since ξ ∈ R, K is bounded on L1 for ξ large (by Theorem 3).

• It suffices to show that (H − z2)−1(H + ξ2)−m is bounded on L1.
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The Lp spectrum: Proof of Theorem 4 -Key Lemma

• Let g⃗m,ξ and Sz(x , y) be the kernels of (H + ξ2)−m and (H − z2)−1(H + ξ2)−m

respectively. Then

Sz(x , y) = (H − z2)−1g⃗m,ξ(x , y) = (−iz)−1
∫ ∞

0
e izt cos(t

√
H)g⃗m,ξ(x , y)dt.

• Key Lemma: Under our geometric assumptions, for z = α+ i(γ/2 + εo) with

εo > 0: sup
y∈M

∫
M

|Sz(x , y)|dx ≤ C < ∞.

• Hence the operator (H − z2)−1(H + ξ2)−m is bounded on L1 whenever
Im(z) > γ/2.

• By the resolvent equation, (H − z2)−1 is bounded on L1 for Im(z) > γ/2.
Replacing z with −z we get Theorem 4 in the case p = 1 for |Im(z)| > γ/2.

• At the same time, (H − z2)−1 is a bounded operator on L2 whenever |Im z | > 0.

• Theorem 4 now follows for Lp from the Stein Interpolation Theorem (for each p
we get an interpolated parabolic region).
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The Lp spectrum: Proof of the Key Lemma

• The resolvent kernel g⃗m,ξ(x , y) replaces the parametrix in the classical wave
kernel method.

• To prove the Key Lemma we split the resolvent kernel into two parts, one in a
small neighborhood of y , and one outside.

We then use the finite propagation speed of the wave operator, our generalized
resolvent estimates and the assumption on the exponential rate of volume growth
to prove the estimate.
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The Lp spectrum
A remark on the exponential rate of volume growth

• Let xo ∈ M be a fixed point. γ is bounded below by the volume entropy, that is,

γ ≥ lim sup
R→∞

log vol(Bxo (R))

R

if vol(M) = ∞, and

γ ≥ − lim sup
R→∞

log(vol(M)− vol(Bxo (R)))

R

if vol(M) < ∞.

• The case γ = 0 corresponds to the concept of uniformly subexponential volume
growth for a manifold introduced by Sturm.
Recall that if γ = 0 and the Ricci curvature and the Weitzenböck tensor on
k-forms are bounded below, then σ(p, k) is p-independent.
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The Lp spectrum: A generalization

• Taylor: Certain functions of the Laplacian (depending on their decay rate at
infinity) which are holomorphic on a strip in the complex plane, will be
holomorphic on Lp.
For the proof, he considers the Fourier transform of f , and obtains estimates via
the wave kernel. Bounded geometry is a requirement on M.

• We consider functions for which we can define the Laplace transform.
Let g̃(t) be the inverse Laplace transformation of g . Then the kernel G (x , y) of
g(∆) can be written as

G (x , y) =

∫ ∞

0
g̃(t)h⃗(x , y , t)dt.

• Example. Let z be a fixed complex number such that |Im(z)| > γo/2+2εo . Let

g(w) =
1

w − z2 , f (w) =
1

w2 − z2 .

Note that the inverse Laplace transform of g exists for w > |z2|.
f , g satisfy the following more general assumptions:
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The Lp spectrum: A generalization

1 Let γ be the exponential rate of volume growth of M. Consider the
horizontal strip

W = {w ∈ C | |Im(w)| < γ/2 + εo}

for some εo > 0. Let f (w) be an even holomorphic function on W satisfying

|f (j)(w)| ≤ Cj

(1 + |w |)j

for all 0 ≤ j ≤ n/2 + 2 and w ∈ W .
2 Let g(w) = f (

√
w) and c ≫ 0. Assume that the inverse Laplace transform

g̃(t) of g(s) exists for s ≥ c , that is, for any real number s ≥ c , we have

g(s) =

∫ ∞

0
e−st g̃(t)dt.

We further assume that g̃ is of at most exponential growth,

|g̃(t)| ≤ c1e
c2t for all t ∈ [0,∞)

for constants c1, c2 > 0.
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The Lp spectrum: A generalization

Theorem 5 (C. -Lu)

Let M be a manifold with exponential rate of volume growth γ ≤ γo and such that
its Ricci curvature and the Weitzenböck tensor on k-forms are bounded below.
Suppose that f , g satisfy the above assumptions (1), (2), and let L =

√
∆− λ1.

Then f (L) is a bounded operator on L1(Λk(M)).

For any positive integer N, by Taylor’s formula for α > 0 we have

f (L) = g(∆− λ1) = AN + BN

=
N−1∑
j=0

(−1)j
αj

j!
g (j)(∆− λ1 + α) +

(−1)NαN

(N − 1)!

∫ 1

0
g (N)(∆− λ1 + tα)tN−1dt.

We use the functional analytic properties of the Laplace transform and our heat
kernel estimates to prove that AN is bounded on L1.
For BN we use the wave kernel method, with parametrix a power of the resolvent.
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The Lp spectrum: Conformally compact manifolds

Let (M, g) be a conformally compact manifold of dimension n. Borthwick shows
that there exists a boundary defining function x and a compact set K such that

M \ K ∼= (0, x1)× Y with g =
dx2

α(y)2x2 +
h(x , y , dy)

x2 + O(x∞).

Here, Y n−1 is a compact manifold (not necessarily connected), the boundary at
infinity.
h(x , y , dy) is a smooth family of metrics on Y and converges uniformly to a fixed
smooth metric h(0, y , dy) on Y as x → 0.

The sectional curvature tends to −α(y)2 as x → 0.
Suppose that |α(y)| ∈ [α0, α1].

Mazzeo proved that σess(2, k) = [α2
0(n − 2k − 1)2/4,∞) for k < n/2 and

σess(2, n/2) = {0} ∪ [α2
0/4,∞).

However, γ = (n − 1)α1, is the exponential rate of volume growth of M.
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The Lp spectrum: Conformally compact manifolds

Theorem 6 (C.-Rowlett)
Let M be a conformally compact manifold and A = ∪y∈Y |α(y)|. Then, for
1 ≤ p ≤ ∞.

σ(p, 0) ⊃
⋃
α∈A

{
α2(n−1)2

4 + z2
∣∣∣ z ∈ C with |Im z | ≤ (n − 1)α

∣∣∣ 1
p − 1

2

∣∣∣}
Moreover, the spectrum is contained in the parabolic region{

λ1 + z2
∣∣∣ z ∈ C with |Im z | ≤ (n − 1)α1

∣∣∣ 1
p − 1

2

∣∣∣}
The case of the hyperbolic space corresponds to A = {1}.
In general, if A = {α0} and λ1 = α2

0(n − 1)2/4, then the spectrum is precisely a
parabolic region.

Note that the parabolas Qα
p are more open as α increases and move to the right.
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The Lp spectrum: Conformally compact manifolds

• The enveloping curve is a conic region.

• There are two obstructions in knowing the Lp spectrum precisely: the isolated
eigenvalues of finite multiplicity which make λ1 move to the left, and the variation
of the sectional curvature at infinity.
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The Lp spectrum: Other applications

• Siasos proved that if M is a warped product at infinity with sectional curvature
approaching −α2

0 at infinity, then for 0 ≤ k ≤ n/2

σ(p, k) ⊃
{

α2
0(n−1−2k)2

4 + z2
∣∣∣ z ∈ C with |Im z | ≤ (n − 1)α0

∣∣∣ 1
p − 1

2

∣∣∣} = Qp,k

We also have an analogous parabola which contains the spectrum, and with vertex
at λ1.

• We can control the set of isolated eigenvalues of finite multiplicity over certain
quotients of hyperbolic space as in the case of the Laplacian on functions (Davies,
Simon, Taylor).
Let M = Hn/Γ with Γ a geometrically finite group such that M has infinite
volume and no cusps. For 0 ≤ k < n/2

σ(p, k) = {λ1, λ2, . . . , λN} ∪ Qp,k

α0 = 1 and {λ1, λ2, . . . , λN} are the isolated eigenvalues of finite multiplicity for
the Laplacian on L2(Λk).
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The Lp spectrum -Lack of duality

• Key observation: Even if σ(p, k) = σ(p∗, k) the nature of the points in the
spectra can differ.

• Taylor 1989, proved that over symmetric spaces of noncompact type, every
point inside a parabolic region is an eigenvalue for the Lp-spectrum of the
Laplacian on functions for p > 2.

• Ji and Weber 2010, proved that over locally symmetric spaces of rank 1, for
p > 2, σ(p, 0) contains an open subset of C in which every point is an eigenvalue,
whereas for 1 < p < 2 the set of eigenvalues is a discrete set.
-They also showed in 2015 that over certain non-compact locally symmetric
spaces of higher rank and with finite volume every point in a parabolic region,
except for a discrete set, is an eigenvalue for 1 < p < 2.

• For the Laplacian on k-forms over Hn this is also the case: For p > 2 every
point in the interior of the parabola Qp,k is an Lp eigenvalue, whereas for
1 ≤ p ≤ 2, none of the points in Qp,k is an eigenvalue [C.-Lu].
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Analytical properties of the Lp spectrum

• Using the duality of Banach spaces, we prove that:
λ ∈ σ(p, k) if and only if for any ε > 0,
either there is an ω ∈ Lp(Λk) such that ∥∆ω − λω∥Lp ≤ ε∥ω∥Lp

or, there is an ω ∈ Lp
∗
(Λk) such that ∥∆ω − λω∥Lp∗ ≤ ε∥ω∥Lp∗ .

• Our resolvent estimates allow us to show the following:

Theorem 7 (C.-Lu)
Suppose that M has Ricci curvature and Weitzenböck tensor on k-forms bounded
below, and the volume of geodesic balls of radius one is uniformly bounded below.
Fix p ≥ 2. Then, λ ∈ σ(p, k) if and only if for any ε > 0 there is an ω ∈ Lp(Λk)
such that

∥∆ω − λω∥Lp ≤ ε∥ω∥Lp .
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Analytical properties of the Lp spectrum

Theorem 8 (C.-Lu)

Suppose that Mn is a complete manifold with Ricci curvature and the
Weitzenböck tensor on (k − 1), k and (k + 1)-forms bounded below. Then,

σ(p, k) \ {0} ⊂ σ(p, k − 1) ∪ σ(p, k + 1)

for any 1 ≤ p ≤ ∞.

Proof: Let λ ∈ ρ(p, k − 1) ∩ ρ(p, k + 1), λ ̸= 0.

By the resolvent equation, for α > 0 large enough,

(∆− λ)−1 = (∆+ α)−1 + · · ·+ (λ+ α)2m−1(∆ + α)−2m

− (λ+ α)2m

λ
(∆ + α)−2m +

(λ+ α)2m

λ
(∆− λ)−1∆(∆+ α)−2m.

So it suffices to prove that the last operator on the right in bounded on Lp.
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Analytical properties of the Lp spectrum

Observe that,

(∆− λ)−1∆(∆+ α)−2m =d(∆ + α)−m(∆− λ)−1δ(∆ + α)−m

+ δ(∆ + α)−m(∆− λ)−1d(∆ + α)−m.

The operators d(∆ + α)−m and δ(∆ + α)−m are bounded on Lp under our
curvature assumptions, for any m > 1/2 and α large enough.

So, if λ ∈ ρ(p, k − 1) ∩ ρ(p, k + 1), λ ̸= 0, the operator on the right side is
bounded on Lp(Λk(M)), and in consequence λ ∈ ρ(p, k) by the resolvent equation
above.

• This result was necessary for the computation of σ(p, n/2) over Hn:
Note that {0} ∈ σ(p, n/2), for p near p = 2, and there is a spectral gap so the
interpolation argument does not work well to give the resolvent parabola.
Observing that Qp,(n−2)/2 = Qp,(n+2)/2 = Qp,n/2, Theorem 8 allows us to show
that σ(p, n/2) \ {0} = Qp,n/2.
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Thank you!
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